Fine-tuning Mask-RCNN using PyTorch

In this post, I'll show you how fine-tune Mask-RCNN on a custom dataset. Fine-tune Mask-RCNN is very useful, you can use it to segment specific object and make cool applications.

In a previous post, we've tried fine-tune Mask-RCNN using matterport's implementation. We've seen how to prepare a dataset using VGG Image Annotator (ViA) and how parse json annotations.

This time, we are using PyTorch to train a custom Mask-RCNN. And we are using a different dataset which has mask images (.png files) as . So, we can practice our skills in dealing with different data types. Without any futher ado, let's get into it.

We are using the Pedestrian Detection and Segmentation Dataset from Penn-Fudan Database.

It contains 170 images with 345 instances of pedestrians.

Customize the Dataset

First, use the following command to download and unzip the dataset.

!wget https://www.cis.upenn.edu/~jshi/ped_html/PennFudanPed.zip .
!unzip PennFudanPed.zip

The data is structured as follows

PennFudanPed/
  PedMasks/
    FudanPed00001_mask.png
    FudanPed00002_mask.png
    FudanPed00003_mask.png
    FudanPed00004_mask.png
    ...
  PNGImages/
    FudanPed00001.png
    FudanPed00002.png
    FudanPed00003.png
    FudanPed00004.png

Let's look at one example from the dataset and it's corresponding segmentation mask.

In [1]:
from PIL import Image
Image.open('PennFudanPed/PNGImages/FudanPed00020.png')
Out[1]:
In [2]:
mask = Image.open('PennFudanPed/PedMasks/FudanPed00020_mask.png')
# each mask instance has a different color, from zero to N, where
# N is the number of instances. In order to make visualization easier,
# let's adda color palette to the mask.
mask.putpalette([
    0, 0, 0, # black background
    255, 0, 0, # index 1 is red
    255, 255, 0, # index 2 is yellow
    255, 153, 0, # index 3 is orange
    200,200,200, # index 4
])
mask
Out[2]:

Define a Dataset Class to load the data

The dataset class should inherit from the standard torch.utils.data.Dataset class, and implement __len__ and __getitem__.

The only specificity that we require is that the dataset __getitem__ should return:

  • image: a PIL Image of size (H, W)
  • target: a dict containing the following fields
    • boxes (FloatTensor[N, 4]): the coordinates of the N bounding boxes in [x0, y0, x1, y1] format, ranging from 0 to W and 0 to H
    • labels (Int64Tensor[N]): the label for each bounding box
    • image_id (Int64Tensor[1]): an image identifier. It should be unique between all the images in the dataset, and is used during evaluation
    • area (Tensor[N]): The area of the bounding box. This is used during evaluation with the COCO metric, to separate the metric scores between small, medium and large boxes.
    • iscrowd (UInt8Tensor[N]): instances with iscrowd=True will be ignored during evaluation.
    • (optionally) masks (UInt8Tensor[N, H, W]): The segmentation masks for each one of the objects
    • (optionally) keypoints (FloatTensor[N, K, 3]): For each one of the N objects, it contains the K keypoints in [x, y, visibility] format, defining the object. visibility=0 means that the keypoint is not visible. Note that for data augmentation, the notion of flipping a keypoint is dependent on the data representation, and you should probably adapt references/detection/transforms.py for your new keypoint representation

If your model returns the above methods, they will make it work for both training and evaluation, and will use the evaluation scripts from pycocotools.

In [3]:
import os
import numpy as np
import torch
import torch.utils.data
from PIL import Image


class PedestrianDataset(torch.utils.data.Dataset):
    def __init__(self, root, transforms=None):
        self.root = root
        self.transforms = transforms
        # load all image files, sorting them to
        # ensure that they are aligned
        self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
        self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))

    def __getitem__(self, idx):
        # load images ad masks
        img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
        mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
        img = Image.open(img_path).convert("RGB")
        # note that we haven't converted the mask to RGB,
        # because each color corresponds to a different instance
        # with 0 being background
        mask = Image.open(mask_path)

        mask = np.array(mask)
        # instances are encoded as different colors
        obj_ids = np.unique(mask)
        # first id is the background, so remove it
        obj_ids = obj_ids[1:]

        # split the color-encoded mask into a set
        # of binary masks
        masks = mask == obj_ids[:, None, None]

        # get bounding box coordinates for each mask
        num_objs = len(obj_ids)
        boxes = []
        for i in range(num_objs):
            pos = np.where(masks[i])
            xmin = np.min(pos[1])
            xmax = np.max(pos[1])
            ymin = np.min(pos[0])
            ymax = np.max(pos[0])
            boxes.append([xmin, ymin, xmax, ymax])

        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        # there is only one class
        labels = torch.ones((num_objs,), dtype=torch.int64)
        masks = torch.as_tensor(masks, dtype=torch.uint8)

        image_id = torch.tensor([idx])
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
        # suppose all instances are not crowd
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)

        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["masks"] = masks
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        return len(self.imgs)

Define Model Architecture

As we want to fine-tune Mask-RCNN, we need to modify its pre-trained head with a new one. For Mask-RCNN, because it has an object-detecor (box_predictor) and a mask_predictor. So, we need to modify both of them to adapt to our dataset.

In [4]:
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor

      
def build_model(num_classes):
    # load an instance segmentation model pre-trained on COCO
    model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)

    # get the number of input features for the classifier
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    # replace the pre-trained head with a new one
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    # Stop here if you are fine-tunning Faster-RCNN

    # now get the number of input features for the mask classifier
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    # and replace the mask predictor with a new one
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer,
                                                       num_classes)

    return model

Training the Model

For training process, we will use some helper function from PyTorch Github Repo. They are located in references/detection/ we will use references/detection/engine.py, references/detection/utils.py and references/detection/transforms.py.

!git clone https://github.com/pytorch/vision.git
%cd vision
!git checkout v0.3.0

!cp references/detection/utils.py ../
!cp references/detection/transforms.py ../
!cp references/detection/coco_eval.py ../
!cp references/detection/engine.py ../
!cp references/detection/coco_utils.py ../

Load Data and Transform

In [5]:
from engine import train_one_epoch, evaluate
import utils
import transforms as T


def get_transform(train):
    transforms = []
    # converts the image, a PIL image, into a PyTorch Tensor
    transforms.append(T.ToTensor())
    if train:
        # during training, randomly flip the training images
        # and ground-truth for data augmentation
        transforms.append(T.RandomHorizontalFlip(0.5))
    return T.Compose(transforms)

# use our dataset and defined transformations
dataset = PedestrianDataset('PennFudanPed', get_transform(train=True))
dataset_test = PedestrianDataset('PennFudanPed', get_transform(train=False))

# split the dataset in train and test set
torch.manual_seed(1)
indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-50])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])

# define training and validation data loaders
data_loader = torch.utils.data.DataLoader(
    dataset, batch_size=2, shuffle=True, num_workers=4,
    collate_fn=utils.collate_fn)

data_loader_test = torch.utils.data.DataLoader(
    dataset_test, batch_size=1, shuffle=False, num_workers=4,
    collate_fn=utils.collate_fn)

Initialize Model and Optimizer

In [6]:
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

# our dataset has two classes only - background and person
num_classes = 2

# get the model using our helper function
model = build_model(num_classes)
# move model to the right device
model.to(device)

# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
                            momentum=0.9, weight_decay=0.0005)

# and a learning rate scheduler which decreases the learning rate by
# 10x every 3 epochs
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                               step_size=3,
                                               gamma=0.1)

Start Training

Use the following code block to train the model, we train 10 epochs. This trainig process may take a while.

# number of epochs
num_epochs = 10

for epoch in range(num_epochs):
    # train for one epoch, printing every 10 iterations
    train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
    # update the learning rate
    lr_scheduler.step()
    # evaluate on the test dataset
    evaluate(model, data_loader_test, device=device)

After training 10 epochs, we see the log below showing our model's performance on bounding box prediction and segmentation mask predition.

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.829
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.991
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.953
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.518
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.840
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.381
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.873
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.873
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.787
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.879
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.760
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.991
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.931
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.358
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.771
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.349
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.806
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.806
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.725
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.812

Good. Now, you have a customized Mask-RCNN model, you can save it for future use.

torch.save(model, 'mask-rcnn-pedestrian.pt)

Inference

Now our model is ready for making inference. We need to define a few util functions in order to visualize the results. The code below is well explained by the comments.

In [ ]:
# set to evaluation mode
model.eval()
CLASS_NAMES = ['__background__', 'pedestrian']
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
In [8]:
%matplotlib inline
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torchvision.transforms as T
import torchvision
import numpy as np

import cv2
import random
import warnings
warnings.filterwarnings('ignore')

def get_coloured_mask(mask):
    """
    random_colour_masks
      parameters:
        - image - predicted masks
      method:
        - the masks of each predicted object is given random colour for visualization
    """
    colours = [[0, 255, 0],[0, 0, 255],[255, 0, 0],[0, 255, 255],[255, 255, 0],[255, 0, 255],[80, 70, 180],[250, 80, 190],[245, 145, 50],[70, 150, 250],[50, 190, 190]]
    r = np.zeros_like(mask).astype(np.uint8)
    g = np.zeros_like(mask).astype(np.uint8)
    b = np.zeros_like(mask).astype(np.uint8)
    r[mask == 1], g[mask == 1], b[mask == 1] = colours[random.randrange(0,10)]
    coloured_mask = np.stack([r, g, b], axis=2)
    return coloured_mask

def get_prediction(img_path, confidence):
    """
    get_prediction
      parameters:
        - img_path - path of the input image
        - confidence - threshold to keep the prediction or not
      method:
        - Image is obtained from the image path
        - the image is converted to image tensor using PyTorch's Transforms
        - image is passed through the model to get the predictions
        - masks, classes and bounding boxes are obtained from the model and soft masks are made binary(0 or 1) on masks
          ie: eg. segment of cat is made 1 and rest of the image is made 0
    
    """
    img = Image.open(img_path)
    transform = T.Compose([T.ToTensor()])
    img = transform(img)

    img = img.to(device)
    pred = model([img])
    pred_score = list(pred[0]['scores'].detach().cpu().numpy())
    pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
    masks = (pred[0]['masks']>0.5).squeeze().detach().cpu().numpy()
    # print(pred[0]['labels'].numpy().max())
    pred_class = [CLASS_NAMES[i] for i in list(pred[0]['labels'].cpu().numpy())]
    pred_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(pred[0]['boxes'].detach().cpu().numpy())]
    masks = masks[:pred_t+1]
    pred_boxes = pred_boxes[:pred_t+1]
    pred_class = pred_class[:pred_t+1]
    return masks, pred_boxes, pred_class

def segment_instance(img_path, confidence=0.5, rect_th=2, text_size=2, text_th=2):
    """
    segment_instance
      parameters:
        - img_path - path to input image
        - confidence- confidence to keep the prediction or not
        - rect_th - rect thickness
        - text_size
        - text_th - text thickness
      method:
        - prediction is obtained by get_prediction
        - each mask is given random color
        - each mask is added to the image in the ration 1:0.8 with opencv
        - final output is displayed
    """
    masks, boxes, pred_cls = get_prediction(img_path, confidence)
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    for i in range(len(masks)):
      rgb_mask = get_coloured_mask(masks[i])
      img = cv2.addWeighted(img, 1, rgb_mask, 0.5, 0)
      cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
      cv2.putText(img,pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
    plt.figure(figsize=(20,30))
    plt.imshow(img)
    plt.xticks([])
    plt.yticks([])
    plt.show()

Now we are ready to go. Let's see a few examples from our model's inference.

Example 1

In [9]:
!wget -nv https://storage.needpix.com/rsynced_images/pedestrian-zone-456909_1280.jpg -O pedestrian.jpg
segment_instance('./pedestrian.jpg', confidence=0.7)
2020-06-24 08:24:26 URL:https://storage.needpix.com/rsynced_images/pedestrian-zone-456909_1280.jpg [409534/409534] -> "pedestrian.jpg" [1]

Example 2

In [10]:
!wget -nv https://p0.pikrepo.com/preview/356/253/woman-standing-under-umbrella-beside-pedestrian-lane-with-car-on-road-screenshot.jpg -O pedestrian2.jpg
segment_instance('./pedestrian2.jpg', confidence=0.7)
2020-06-24 08:24:36 URL:https://p0.pikrepo.com/preview/356/253/woman-standing-under-umbrella-beside-pedestrian-lane-with-car-on-road-screenshot.jpg [103583/103583] -> "pedestrian2.jpg" [1]

Example 3

In [11]:
!wget -nv https://p0.pikrepo.com/preview/577/359/man-in-white-dress-shirt-and-brown-pants-walking-on-pedestrian-lane-during-daytime.jpg -O pedestrian3.jpg
segment_instance('./pedestrian3.jpg', confidence=0.7)
2020-06-24 08:24:45 URL:https://p0.pikrepo.com/preview/577/359/man-in-white-dress-shirt-and-brown-pants-walking-on-pedestrian-lane-during-daytime.jpg [103869/103869] -> "pedestrian3.jpg" [1]

It looks like our customized model works pretty well.

Summary

In this post, we've how to fine-tune Mask-RCNN on a custom dataset using PyTorch pre-trained model. A customized Mask-RCNN can really make cool apps.

I'll prepare a dataset for image segmentation in the future when I have time. So stay tuned.

Reference:

https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html



Comments

comments powered by Disqus